Visualization of the Peroxisomal Compartment in Living Mammalian Cells: Dynamic Behavior and Association with Microtubules
نویسندگان
چکیده
Peroxisomes in living CV1 cells were visualized by targeting the green fluorescent protein (GFP) to this subcellular compartment through the addition of a COOH-terminal peroxisomal targeting signal 1 (GFP-PTS1). The organelle dynamics were examined and analyzed using time-lapse confocal laser scanning microscopy. Two types of movement could be distinguished: a relatively slow, random, vibration-like movement displayed by the majority (approximately 95%) of the peroxisomes, and a saltatory, fast directional movement displayed by a small subset (approximately 5%) of the peroxisomes. In the latter instance, peak velocities up to 0.75 micron/s and sustained directional velocities up to 0.45 micron/s over 11.5 microns were recorded. Only the directional type of motion appeared to be energy dependent, whereas the vibrational movement continued even after the cells were depleted of energy. Treatment of cells, transiently expressing GFP-PTS1, with microtubule-destabilizing agents such as nocodazole, vinblastine, and demecolcine clearly altered peroxisome morphology and subcellular distribution and blocked the directional movement. In contrast, the microtubule-stabilizing compound paclitaxel, or the microfilament-destabilizing drugs cytochalasin B or D, did not exert these effects. High resolution confocal analysis of cells expressing GFP-PTS1 and stained with anti-tubulin antibodies revealed that many peroxisomes were associated with microtubules. The GFP-PTS1-labeled peroxisomes were found to distribute themselves in a stochastic, rather than ordered, manner to daughter cells at the time of mitosis.
منابع مشابه
Real time imaging reveals a peroxisomal reticulum in living cells.
We have directly imaged the dynamic behavior of a variety of morphologically different peroxisomal structures in HepG2 and COS-7 cells transfected with a construct encoding GFP bearing the C-terminal peroxisomal targeting signal 1. Real time imaging revealed that moving peroxisomes interacted with each other and were engaged in transient contacts, and at higher magnification, tubular peroxisome...
متن کاملPeroxisome elongation and constriction but not fission can occur independently of dynamin-like protein 1.
The mammalian dynamin-like protein DLP1 belongs to the dynamin family of large GTPases, which have been implicated in tubulation and fission events of cellular membranes. We have previously shown that the expression of a dominant-negative DLP1 mutant deficient in GTP hydrolysis (K38A) inhibited peroxisomal division in mammalian cells. In this study, we conducted RNA interference experiments to ...
متن کاملDynamic Behavior of Anisotropic Protein Microtubules Immersed in Cytosol Via Cooper–Naghdi Thick Shell Theory
In the present research, vibrational behavior of anisotropic protein microtubules (MTs) immersed in cytosol via Cooper–Naghdi shell model is investigated. MTs are hollow cylindrical structures in the eukaryotic cytoskeleton which surrounded by filament network. The temperature effect on vibration frequency is also taken into account by assuming temperature-dependent material properties for MTs....
متن کاملNanobiomechanical Properties of Microtubules
Microtubules, the active filaments with tubular shapes, play important roles in a wide range of cellular functions, including structural supports, mitosis, cytokinesis, and vesicular transport, which are essential for the growth and division of eukaryotic cells. Finding properties of microtubules is one of the main concerns of scientists. This work helps to obtain mechanical properties of m...
متن کاملIntracellular Localization of FLAG-Peroxisomal Protein in Chinese Hamster Ovary (CHO) Cells
Epitope tagging is a method of expressing proteins whereby an epitope for a specific monoclonal antibody is fused to a target protein using recombinant DNA techniques. The aim of this study was to sub-clone the peroxisomal protein (PEP) cDNA into a mammalian expression vector leading to the formation of a chimeric PEP-cDNA containing the FLAG epitope. The FLAG-PEP recombinant cDNA was construc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 136 شماره
صفحات -
تاریخ انتشار 1997